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Abstract: The Sigma-1 receptor (Sig-1R) has been described as a pluripotent modulator of distinct physiological 
functions and its involvement in various central and peripheral pathological disorders has been demonstrated. 
However, further investigations are required to understand the complex role of the Sig-1R as a molecular chaperon. 
A specific PET radioligand would provide a powerful tool in Sig-1R related studies. As part of our efforts to develop 
a Sig-1R PET radioligand that shows antagonistic properties, we investigated the suitability of 1-(4-(6-methoxynaph-
thalen-1-yl)butyl)-4-methylpiperidine (designated PB212) for imaging Sig-1R. PB212 is a Sig-1R antagonist and ex-
hibits subnanomolar affinity (Ki = 0.030 nM) towards Sig-1R as well as good to excellent selectivity over Sig-2R. The 
radiolabelling of [11C]PB212 was accomplished by O-methylation of the phenolic precursor using [11C]MeI. In vitro 
autoradiography with [11C]PB212 on WT and Sig-1R KO mouse brain tissues revealed high non-specific binding, 
however using rat spleen tissues from CD1 mice and Wistar rats, high specific binding was observed. The spleen is 
known to have a high expression of Sig-1R. In vivo PET experiments in Wistar rats also showed high accumulation 
of [11C]PB212 in the spleen. Injection of Sig-1R binding compounds, haloperidol (1 mg/kg) or fluspidine (1 mg/
kg) shortly before [11C]PB212 administration induced a drastic reduction of radiotracer accumulation, confirming 
the specificity of [11C]PB212 towards Sig-1R in the spleen. The results obtained herein indicate that although [11C]
PB212 is not suitable for imaging Sig-1R in the brain, it is a promising candidate for the detection and quantification 
of Sig-1Rs in the periphery. 
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Introduction

The term sigma receptor was initially intro-
duced by Martin and colleagues in 1976 to 
describe the target of the psychotomimetic 
benzomorphan SKF-10,047 (N-allylnormetazo- 
cine) [1]. This receptor was first included in the 
opioid system (sigma opioid receptor) since the 
effects of SKF-10,047 were blocked by the opi-
oid antagonist naltrexone [1]. However, subse-
quent studies revealed that the SKF-10,047 
binding site was poorly inhibited by naltrexone 
and that the psychotomimetic effects of this 
drug in dogs were not antagonized by naltrex-
one pretreatment [2, 3]. Hence, the sigma opi-
oid receptor introduced by Martin emerged as a 

non-opioid, non-phencyclidine, and non-dopa-
mine receptor so that the term ‘opioid’ was 
removed from the definition of the sigma recep-
tor (Sig-R) [4]. To date, we know that the sigma 
system consists of at least two different recep-
tor subtypes, Sigma-1 (Sig-1R) and Sigma-2 
(Sig-2R), differing in molecular weight, localiza-
tion, ligand engagement as well as biological 
functions [5, 6].

The Sig-1R was cloned in 1996, yielding a pro-
tein of 223 amino acids which exhibits no 
homology with any other known mammalian 
protein [7, 8]. Several non-related endogenous 
compounds, such as steroids (e.g., progester-
one, dehydroepiandrosterone sulfate, etc.), the 
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hallucinogen N,N-dimethyltryptamine, and sp- 
hingosine have been proposed as endogenous 
ligands of Sig-1R. However, their affinities are 
not sufficient to explicitly define their role as 
endogenous ligands [4, 9-12]. Furthermore, 
Sig-1R shows moderate to high affinity towards 
a wide spectrum of exogenous ligands, thereby 
covering several different structural classes 
and with distinct pharmacological effects (neu-
roleptics, antidepressants, antitussives, drugs 
for the treatment of neurodegenerative disor-
ders, drugs of abuse, etc.) [9]. Sig-1Rs are wide-
ly distributed in the human body, both in the 
central nervous system (CNS) [13, 14] and in 
the periphery (mainly in spleen, liver, lung, kid-
ney, and adrenal gland) [6, 7, 14-17]. At the sub-
cellular level, the Sig-1R is mainly localized at 
the endoplasmic reticulum, specifically at the 
interface with the mitochondrion, but it is also 
found in the plasma membrane and in the 
nuclear envelope [9, 18]. The information avail-
able on the physiology and the pharmacology 
of Sig-1Rs supports their classification as 
molecular chaperons, regulating the activity of 
several cellular proteins, such as receptors, ion 
channels, kinases, etc. [9, 18, 19].

Taken together, the wide anatomical and sub-
cellular distribution, the ability to interact with 
several different exogenous ligands, as well  
as the chaperon activity towards different cel-
lular targets render the Sig-1R a pluripotent 
modulator [18] involved in many physiological 
pathways and, consequently, in many central 
and peripheral pathological disorders (compre-
hensive reviews: Cobos et al. [9], Su et al. [18], 
Maurice and Su [19], Nguyen et al. [20]). How- 
ever, further investigations are crucial to under-
stand the complex role of Sig-1Rs both in physi-
ological and pathological conditions. Hence, 
the development of specific radiotracers for 
PET imaging provides a powerful tool in this 
direction. In this study, we aim to evaluate 
PB212 (1-(4-(6-methoxynaphthalen-1-yl)butyl)-
4-methylpiperidine) [21] as a potential PET 
imaging agent for Sig-1R. PB212 exhibits sub-
nanomolar affinity towards Sig-1R (Ki = 0.030 
nM) [21], good to excellent selectivities against 
Sig-2R (Ki = 17.9 nM) [21], emopamil binding 
protein (EBP, Ki = 8.04 nM) [21], serotonin (Ki 
5-HT1A > 1000 nM, Ki 5-HT7 > 1000 nM), dopa-
mine (Ki D2R > 1000 nM, Ki D3R > 1000 nM) 
and adrenergic receptors (IC50 α1 > 100 nM) 
[22]. In addition, PB212 has shown antagonis-
tic properties both in in vitro [23] and in vivo 

[22] assays. Almost all Sig-1R radiotracers de- 
veloped to date are agonists and as such com-
parison of the data obtained from [11C]PB212 
with Sig-1R agonists, such as [11C]SA4503, 
could potentially provide important information 
about Sig-1R physiology, given that agonists 
and antagonists may bind to different states of 
the receptor. With this in mind, we radiolabelled 
PB212 with carbon-11 and assessed its suit-
ability as a PET radioligand for imaging Sig-1R 
[24].

Materials and methods

Animal experiments were conducted in accor-
dance with the Swiss Animal Welfare legislation 
and were approved by the Veterinary Office of 
the Canton Zurich. Male Wistar rats were pur-
chased from Charles River (Sulzfeld, Germany) 
and kept under standard conditions.

All chemicals, unless otherwise stated, were 
purchased from Sigma Aldrich GmbH (Taufkir- 
chen, Germany), ABCR GmbH (Karlsruhe, Ger- 
many), Merck (Darmstadt, Germany), or Fluka 
(Buchs, Switzerland) and were used without 
further purification. Fluspidine was kindly pro-
vided by Prof. Bernand Wünsch (Westfälische 
Wilhelms-Universität Münster, Germany).

Analytical radio-HPLC was performed with a 
flow rate of 1 mL/min on an Agilent 1100 series 
system equipped with a Raytest Gabi Star 
radiodetector (Agilent Technologies, Morges, 
Switzerland). Semi-preparative HPLC purifica-
tions were carried out using a reversed phase 
column (Phenomenex Luna, 5 µm, 250 × 10 
mm) under the following conditions: 50 mM 
ammonium formate in H2O pH = 4.4 (solvent A), 
MeCN (solvent B); isocratic, 45% B; flow rate: 5 
mL/min. Molar activity was calculated by com-
paring ultraviolet peak intensity of the final for-
mulated product with calibration curve of cor-
responding non-radioactive standard of known 
concentrations.

Radiochemistry

[11C]CO2 was produced by proton bombardment 
of nitrogen gas fortified with 0.5% oxygen us- 
ing IBA Cyclone 18/9 cyclotron (18-MeV; IBA, 
Ottignies-Louvain-la-Neuve, Belgium) applying 
the well established 14N(p,a)11C nuclear reacti- 
on. In a first step, nickel-based catalytic reduc-
tion of [11C]CO2 yielded [11C]CH4 which was sub-
sequently iodinated to give [11C]MeI. Subse- 
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quently, [11C]MeI was bubbled into a reaction 
mixture containing phenolic intermediate 1 (1 
mg) and cesium carbonate (6 mg) in DMF (0.4 
mL) and stirred at 90°C for 3 min. After dilution 
of the crude product with water (1.6 mL), purifi-
cation was performed by semi-preparative 
HPLC. The collected radiotracer was diluted 
with water (8 mL) and passed through a C18 
cartridge (Waters, pre-conditioned with 5 mL 
EtOH and 10 mL water). After washing of the 
cartridge with water (5 mL), the product was 
eluted with EtOH (0.8 mL) into a sterile vial and 
diluted with water for injection (9.2 mL) to give 
a final formulation containing 8% of ethanol. 
For quality control, an aliquot of the final formu-
lation was injected into the analytical HPLC sys-
tem. Identity of the product was confirmed by 
co-injection and comparison with the retention 
time of the standard reference. The molar activ-
ity was calculated by linear regression using a 
UV-intensity based calibration curve of stan-
dard reference.

In vitro autoradiography

Autoradiography was performed on rat and 
mouse brain as well as spleen tissues. Sections 
were prepared in 10 μm thickness using a cryo-
stat (Cryo-StarNX50; Thermo Scientific). The 
tissue slices were adsorbed to SuperFrost Plus 
(Menzel) slides and stored at -20°C until use. 
After thawing at room temperature (rt) for 10 
min, sections were pre-incubated for 15 min at 
rt in the incubation buffer (50 mM TRIS·HCl and 
0.01% BSA in H2O; pH 7.4). Slices were dried 
and incubated in a humidified chamber with 
[11C]PB212 (0.3-0.5 nM) in incubation buffer 
for 15 min at rt. To test for specificity towards 
Sig-1R, solutions containing the radiotracer 
and an excess of a different Sig-1R ligand 
(either haloperidol, SA4503, or fluspidine; 10 
μM) were prepared and added to the tissues. 
The tissue slices were washed three times with 
the washing buffer (50 mM TRIS·HCl in H2O; pH 
7.4) (each 2 min) and twice with distilled water 

(each 5 s) on ice, air dried, and exposed to a 
phosphor imager plate for a period of 30 min. 
The plate was scanned using a BAS5000 read-
er (Fujifilm, Dielsdorf, CH).

In vivo PET/CT imaging

PET and CT scans were obtained with a Super 
Argus PET/CT tomograph (Sedecal, Madrid, 
Spain) after injection of [11C]PB212 (18.1-21.4 
MBq, 0.58-1.36 nmol/kg) into the tail of male 
Wistar rats (357-389 g, n = 3) which were kept 
under anesthesia using isoflurane. Under base-
line conditions, radiotracer accumulation was re- 
corded in the region of the spleen in dynamic 
PET acquisition mode over 90 min. During this 
period body temperature and respiratory rate 
were constantly monitored. Under blockade 
conditions, 1 mg/kg of either haloperidol or 
fluspidine were injected 30 seconds before 
radiotracer application in two of the three rats. 
Acquired PET data were reconstructed as user-
defined time frames with a voxel size of 0.3875 
× 0.3875 × 0.775 mm. For anatomical orienta-
tion, CT scans were acquired after each PET 
scan. Images were evaluated with PMOD v3.4 
(PMOD Technologies Inc., Zurich, CH) software. 
Regions of interest (spleen and muscle) were 
drawn manually using the PMOD fusion tool. 
Time activity curves (TACs) for spleen and mus-
cle were expressed as standardized uptake val-
ues (SUVs). 

Results

Radiochemistry

Reference compound PB212 was synthesized 
according to a published procedure [21] and 
subsequently demethylated by reaction with 
BBr3 to provide phenolic precursor 1 [25]. The 
radiosynthesis of [11C]PB212 was accom-
plished by O-methylation of the cesium salt of 
phenolic precursor 1 using [11C]MeI (Scheme 
1). The obtained radiochemical yields ranged 
from 16 to 33% (decay corrected) with molar 

Scheme 1. Synthesis of precursor 1 [25] and radiosynthesis of [11C]PB212. a) BBr3, dry CH2Cl2, 78°C→rt; b) [11C]
CH3I, Cs2CO3, dry DMF.
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activities ranging between 39 and 391 GBq/
μmol at the end of synthesis. In all cases, a 
radiochemical purity ≥ 99% was obtained after 
semi-preparative HPLC purification. The total 
radiosynthesis time from the end of bombard-
ment to the end of synthesis was approximately 
30 min. 

In vitro characterization

In vitro autoradiography with WT and Sig-1R KO 
mouse brain tissues revealed high binding of 
[11C]PB212 in both wildtype and Sig-1R KO 

= 50.2 nM) [30]; 3) fluspidine, a selective Sig-
1R ligand (Ki Sig-1R = 0.59 nM, SISig-2R/Sig-1R = 
1331) [31] with weak binding affinities towards 
several receptors (e.g., phencyclidine NMDA 
binding site, μ, δ, and κ receptors) [31], includ-
ing EBP (Ki = 211 nM) and VAChT (Ki = 1.4 μM) 
[15].

In vivo characterization

Time activity curves (TACs) for spleen and mus-
cle under baseline and blockade conditions  
are depicted in Figure 3. Blocking experiments 

Figure 1. In vitro autoradiography with [11C]PB212 on WT and Sig-1R KO 
mouse brain tissues.

Figure 2. In vitro autoradiography with [11C]PB212 on mouse (A) and rat (B) 
spleen tissues. For blocking conditions, an excess (10 μM) of either haloperi-
dol, SA4503, or fluspidine was used.

mouse, which could not be 
blocked in wild type mouse, 
indicating that the binding to 
mouse brain tissue is mainly 
nonspecific (Figure 1). In con-
trast, high and specific bind- 
ing of [11C]PB212 was observ- 
ed in the autoradiography ex- 
periments using spleen tis-
sues obtained from CD1 mice 
(Figure 2A) and Wistar rats 
(Figure 2B). The high and kno- 
wn physiological expression of 
Sig-1R in the spleen prompted 
us to use the spleen as a tar-
get organ for the evaluation of 
[11C]PB212 for imaging Sig-1R 
expression in the periphery 
[14-16]. Three different block-
ers were selected and used  
to assess [11C]PB212 binding 
specificity towards Sig-1Rs in 
the spleen: 1) haloperidol, a 
nonselective Sig-1R ligand (Ki 
Sig-1R = 0.9 nM, SISig-2R/Sig-1R = 
8.8) [26] with high binding 
affinity also for dopamine re- 
ceptors (e.g., Ki D2R = 2.0 nM, 
Ki D3R = 4.0 nM, Ki D4R = 15 
nM) [27], serotonin receptors 
(e.g., Ki 5-HT2A = 70 nM) [27], 
and adrenergic receptors 
(e.g., Ki α1 = 12 nM) [27]; 2) 
SA4503, a Sig-1R ligand (Ki 
Sig-1R = 4.63 nM, SISig-2R/Sig-1R 
= 13.6) [26] with weak or no 
binding towards several recep-
tors, ion channel, and second 
messenger systems [28], ex- 
cept for the EBP (Ki = 1.7 nM) 
[29] and the vesicular acetyl-
choline transporter (VAChT, Ki 
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were performed using either haloperidol or flus-
pidine because of their different binding profile: 
the former is a nonselective Sig-1R ligand, and 
the latter can be considered one of the most 
selective Sig-1R ligands currently available. The 
injection of haloperidol (1 mg/kg) shortly before 
[11C]PB212 administration led to a drastic re- 
duction of the radiotracer accumulation in the 
spleen, reaching radioactivity levels detected in 
the muscle (background region) 60 minutes 
post injection. The injection of fluspidine (1 mg/
kg) induced a partial, but significant, reduction 
of [11C]PB212 accumulation in the spleen.

Discussion

Sig-1Rs play a crucial but not yet fully under-
stood role in physiological and pathological 
conditions. A connection of Sig-1R with cocaine 
abuse has been demonstrated [32, 33], while 
knocking-down of Sig-1R has been associat- 
ed with neurotoxic effects and neurodegenera-
tion in amyotrophic lateral sclerosis (ALS), 
Alzheimer’s Disease (AD), Parkinson’s Disease 
(PD), and Huntington’s Disease (HD). Additio- 
nally, some Sig-1R ligands have shown impor-
tant therapeutic effects in the animal models 
of these neurodegenerative diseases [18, 20]. 
Accordingly, clinical trials are currently ongoing 
to evaluate the diagnostic and therapeutic po- 
tentials of Sig-1R ligands [34, 35]. Furthermore, 
Sig-1R overexpression has been found in sev-
eral tumor cell lines and tumor biopsies, and 

found in [39-42]. [11C]SA4503 [16], [18F]fluspi-
dine [15] and [18F]FTC-146 [43] are three exam-
ples of the most assessed radioligands for PET 
imaging of Sig-1R in the CNS. [11C]SA4503 is 
one of the first valuable radiotracers developed 
for brain PET imaging of Sig-1R and it has been 
studied in healthy human volunteers as well as 
in PD and AD patients [44, 45]. The radioli-
gands with longer half-lives [18F]fluspidine and 
[18F]FTC-146 have been tested in human volun-
teers and have emerged as two promising 
18F-radiolabelled Sig-1R radiotracers for brain 
PET imaging [46, 47]. Much more limited is the 
development of radioligands for PET detection 
of Sig-1R in cancer, with [11C]SA4503 showing 
specific uptake in tumor-bearing rodents [48-
52]. Nevertheless, the clinical utility of these 
radiotracers has not yet been established. In 
this study, we therefore aimed to evaluate [11C]
PB212, which is an antagonist and shows high 
affinity for Sig-1R and selectivity towards other 
receptors. In particular, the selectivity of PB212 
over Sig-2R receptor subtype is much higher 
than the selectivity reported for SA4503 [21, 
22, 26]. 

The 11C-radiolabelling was successfully achiev- 
ed using [11C]MeI as methylating agent leading 
to high molar activity and ≥ 99% radiochemical 
purity of the final product. In vitro autoradiogra-
phy experiments showed that [11C]PB212 binds 
homogenously to WT and Sig-1R knock-out 
mouse brain, demonstrating a lack of tissue 

Figure 3. Typical time activity curves of [11C]PB212 in whole spleen and mus-
cle under baseline or blocking conditions with 1 mg/kg of either haloperidol 
or fluspidine shortly prior injection of the radioligand.

anti-cancer effects have been 
observed for some Sig-1R lig- 
ands [36-38]. A specific Sig-
1R PET tracer would help to 
gain deeper insight into the 
physiological and pathological 
pathways in which the Sig-1R 
is involved, both in the CNS 
and in the periphery. In addi-
tion, such a tracer could be a 
useful tool not only for detect-
ing the down- or upregulation 
of Sig-1Rs associated with dif-
ferent disorders, but also for 
the monitoring of disease pro-
gression and therapeutic out-
come in the clinic.

Several radioligands have be- 
en developed for the PET im- 
aging of Sig-1R and a summa-
ry of existing ligands can be 
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specificity (Figure 1). This result is in agree-
ment with previous reports, which showed that 
picomolar affinities lead to low specific binding 
of Sig-1R radiotracers to brain tissue [40]. In 
addition, we speculate that the lipophilicity of 
[11C]PB212 (clogD7.4 = 2.38, calculated through 
https://chemicalize.com/) could be a reason 
for the lack of CNS specificity. Nevertheless, in 
vitro autoradiography in rodent spleen tissue 
demonstrated a complete displacement of [11C]
PB212 in the presence of three Sig-1R blockers 
(i.e. haloperidol, SA4503 and fluspidine, Figure 
2A, 2B). These results were further confirmed 
by in vivo PET imaging in Wistar rats. Figure 3 
shows the corresponding TACs comparing [11C]
PB212 uptake in the spleen and background 
(muscle) under baseline conditions with block-
ade conditions using either haloperidol or flus-
pidine. PET images are presented in Figure 4 
and show the tracer accumulation in the spleen 
under baseline (panel A) as well as blockade 
conditions with haloperidol (panel B) and fluspi-
dine (panel C). Both haloperidol and fluspidine 
administered at a concentration of 1 mg/kg 
significantly reduced radioactivity uptake in the 
spleen, suggesting reversible and specific bind-
ing of [11C]PB212 to Sig-1R. The reduction of 
radioactivity in the spleen was more pro-
nounced with haloperidol and reached back-
ground (muscle) levels towards the end of the 
studies. 

The results of the PET imaging studies in the 
spleen clearly demonstrate that [11C]PB212 
can be used to assess the peripheral expres-

sion of Sig-1R in vivo and support the further 
evaluation of [11C]PB212 in the periphery.

Conclusion

Here, we describe the radiolabelling and the 
biological evaluation of [11C]PB212, a well de- 
scribed Sig-1R antagonist with subnanomolar 
affinity and excellent selectivities against a 
number of receptors. [11C]PB212 was synthe-
sized in good radiochemical yields (16-33%) 
and excellent radiochemical purity as well as 
good molar activity (39-391 GBq/μmol). Alth- 
ough [11C]PB212 is not suitable for imaging  
Sig-1R in the brain, the high in vitro and in vivo 
specificity observed in the spleen suggests that 
[11C]PB212 can be used to image Sig-1R expres-
sion in the periphery. These promising results 
warrant further studies in Sig-1R-positive tumor 
bearing mice in order to shed more light on the 
utility of [11C]PB212 for peripheral Sig-1R PET 
detection in healthy and diseased organs. 
Furthermore, being a Sig-1R antagonist, [11C]
PB212 could provide additional information on 
Sig-1R physiology which cannot otherwise be 
obtained with Sig-1R agonists such as [11C]
SA4503 and [18F]fluspidine.
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