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Abstract: Distinguishing frontotemporal lobar degeneration (FTLD) and Alzheimer Disease (AD) on FDG-PET based 
on qualitative review alone can pose a diagnostic challenge. SPM has been shown to improve diagnostic perfor-
mance in research settings, but translation to clinical practice has been lacking. Our purpose was to create a heuris-
tic scoring method based on statistical parametric mapping z-scores. We aimed to compare the performance of the 
scoring method to the initial qualitative read and a machine learning (ML)-based method as benchmarks. FDG-PET/
CT or PET/MRI of 65 patients with suspected dementia were processed using SPM software, yielding z-scores from 
either whole brain (W) or cerebellar (C) normalization relative to a healthy cohort. A non-ML, heuristic scoring system 
was applied using region counts below a preset z-score cutoff. W z-scores, C z-scores, or WC z-scores (z-scores from 
both W and C normalization) served as features to build random forest models. The neurological diagnosis was used 
as the gold standard. The sensitivity of the non-ML scoring system and the random forest models to detect AD was 
higher than the initial qualitative read of the standard FDG-PET [0.89-1.00 vs. 0.22 (95% CI, 0-0.33)]. A categori-
cal random forest model to distinguish AD, FTLD, and normal cases had similar accuracy than the non-ML scoring 
model (0.63 vs. 0.61). Our non-ML-based scoring system of SPM z-scores approximated the diagnostic performance 
of a ML-based method and demonstrated higher sensitivity in the detection of AD compared to qualitative reads. 
This approach may improve the diagnostic performance.
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Introduction

Alzheimer Disease (AD) is the most common 
cause of cognitive impairment and dementia, 
accounting for 50-60% of cases and currently 
affecting over 5 million individuals in the US. At 
age 45, the estimated lifetime risk is 10-20% 
[1]. In current clinical practice, assessment of 
region-specific patterns of cortical glucose 
metabolism with 2-[18F]fluoro-2-deoxy-d-glu-
cose (FDG) PET represents a mainstay of neu-
roimaging assessment in clinically suspected 
dementia. Specifically, FDG-PET can aid in the 
differential diagnosis of AD versus other types 

of dementia such as frontotemporal lobar 
degeneration (FTLD), which includes frontotem-
poral dementia (FTD) and primary progressive 
aphasia (PPA) [2]. The differentiation of AD from 
FTLD remains challenging, with a false positive 
rate of up to 60% [3]. With the recent FDA 
approval of aducanumab [4], the distinction 
between AD and FTLD in the clinical setting will 
be increasingly important, given that FTLD 
would hypothetically not respond to an amyloid-
targeting agent.

For this indication, FDG-PET outperforms CSF-
based biomarkers as well as MRI and CT [5, 6]. 
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Qualitatively, patients with FTLD demonstrate 
reduced FDG avidity in the anterior cingulate 
cortex, frontal lobes, basal ganglia, and anteri-
or temporal lobes, whereas patients with AD 
demonstrate decreased FDG avidity in the pos-
terior temporoparietal lobes and posterior cin-
gulate cortex with preservation of FDG avidity 
in the anterior cingulate cortex [7-9]. However, 
advanced AD can involve both the frontal and 
anterior temporal lobes, which can present a 
differential diagnostic challenge.

Diagnostic accuracy of FDG-PET is further 
improved utilizing statistical parametric map-
ping (SPM), a technique in which standardized 
uptake values (SUVs) within select regions are 
compared to cognitively normal subjects [10, 
11]. An important consideration for SPM is 
whether normalization of FDG avidity through-
out the subject’s brain is performed relative to 
an intensity composite of the whole brain (W) or 
the cerebellum (C). It is not well established 
which normalization method should be routine-
ly used. While cerebellar normalization seems 
to be more sensitive for early diagnosis, cere-
bral global normalization might be superior for 
differential diagnostic purposes in dementia 
syndromes [12].

While SPM has been well-validated by multiple 
research groups in dementia imaging [11, 
13-15], adoption among radiologists in clinical 
practice is lagging, who often still rely upon 
diagnostically inferior, pre-processed FDG-PET 
to render diagnoses. In fact, the American 
College of Radiology (ACR) Appropriateness 
Criteria does not specifically endorse the use of 
SPM in clinical practice [16]. One potential 
cause of low adoption could be due to the lack 
of standardized methods when faced with a 
large dataset of region-specific z-scores for 
each patient. In fact, a lack of standardization 
in interpreting FDG-PET has led some experts 
to dissuade the routine use of FDG-PET in sus-
pected early dementia [17].

Machine learning (ML) is an emerging approach 
that could assist radiologists in interpreting 
either standard FDG-PET images or SPM data. 
Different techniques have been attempted, 
ranging from convolutional neural networks to 
random forests, incorporating different compo-
nents of FDG-PET [18, 19]. However, it is 

unclear which particular features from FDG-
PET yield the most robust ML models given that 
redundancy and irrelevancy can lead to overfit-
ting [20]. Moreover, ML approaches for image 
interpretation currently face multiple barriers 
to widespread adoption, including divergence 
between research and real-world datasets, 
costs incurred for regulatory approval, hetero-
geneity in the clinical environments, and con-
cerns over data ownership [21]. There is also 
the practical consideration that no clinically-
oriented, commercially-available ML toolkit is 
available that classifies dementia subtypes 
based on FDG-PET patterns. SPM software, on 
the other hand, is readily available, and it is 
possible that a non-ML heuristic approach 
could approximate the performance of ML.

The purpose of this study is to benchmark the 
performance of a non-ML scoring system based 
on regions below a preset z-score cutoff against 
random forest models trained on raw SPM 
z-scores. Findings will inform whether a heuris-
tic approach to quantitative SPM analysis can 
approximate the performance of a ML method. 
This practical scoring system can leverage the 
important validation of SPM in research setting 
and encourage SPM’s adoption into clinical 
practice.

Methods

A summary of patient retrieval, image process-
ing, and model validation is outlined in Figure 
1.

Patient selection

Following institutional review board approval, 
we retrospectively identified patients in whom 
AD or FTLD was clinically suspected by search-
ing clinical statements from radiology reports 
using our institutional radiology report data-
base. Consent was not obtained due to retro-
spective design and data was analyzed anony-
mously. The following search terms were used: 
“Alzheimer”, “dementia”, “frontotemporal de- 
mentia”, “semantic dementia”, and “primary 
progressive aphasia”. Patients with a history of 
cerebrovascular accident were excluded from 
analysis. This yielded 99 cases, of whom 3 
were excluded for a history of CVA and 31 were 
excluded due to a lack of available documenta-
tion from a treating neurologist. CVA patients 
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were excluded given that their cognitive or 
behavioral findings were most likely due to their 
prior infarction, which could affect regional 
FDG avidity and calculated z-scores. This yield-
ed a total of 65 patients scanned from 10/ 
9/2013 to 11/28/2018. Cerebrospinal fluid 
(CSF) testing for AD biomarkers and results 
from cognitive testing were reviewed, when 
available.

Image acquisition and processing

PET/CT images were acquired on Siemens 
Biograph mCT PET/CT 64 slice and PET/MR 
was acquired on 3T Siemens Biograph mMR 
hybrid scanner according to standard depart-
mental protocol for dementia imaging. FDG-
PET data from PET/MR (N = 20) and PET/CT (N 
= 45) cases were post-processed using the 
syngo.via (Siemens Healthineers, Erlangen, 
Germany) MI Neurology Workflow. This involves 
alignment of PET to the MRI or CT using a rigid 
registration algorithm. Adequate co-registra-
tion PET and anatomical data was confirmed 
visually by JF, a senior radiology resident and  
JI, a board-certified radiologist with subspecial-
ty in training in neuroradiology and nuclear 
medicine. 

to account for global position and scaling 
differences as well as a deformable registration 
algorithm to allow for localized adjustments. 
Smoothing was accomplished with an isotropic 
Gaussian filter of size 12 mm fullwidth at half-
maximum. This was followed by intensity 
normalization using an automated whole brain 
or cerebellar protocol [27].

Z-scores were generated by comparison to a 
database within the syngo.via MI Neurology 
Workflow software derived from 33 healthy 
controls (age 46-79, 22 female, 11 male), ����con-
verting the volume to the Montreal Neurologi- 
cal Institute (MNI) standard space and parsing 
into Automated Anatomical Labeling (AAL) 
regions, which have been described previously 
[28]. A z-score (Patient SUV-Healthy Atlas SUV)/
Healthy Atlas Standard Deviation) was generat-
ed for each AAL region.

Z-score-based random forest models

Random forest was the machine learning meth-
od selected for comparison given the relatively 
limited number of features and small sample 
size. Random forest is a method of combining 
decision trees and is especially useful when 

Figure 1. Flowchart of patient retrieval, image processing, and model valida-
tion. 

Attenuation correction for 
PET/MR studies was acquir- 
ed by segmenting the Dixon 
images into 5 compartments: 
air, lung, fat, bone, and soft 
tissue, which is standard  
on Siemens Biograph mMR 
scanners [22, 23]. The PET/
CT and PET/MR scanners 
were not harmonized given 
the retrospective study design 
and real-world clinical cohort. 
For the purposes of this study, 
SPM-derived z-scores from 
either PET/CT or PET/MR were 
considered directly compara-
ble given that in clinical set-
tings, PET/CT and PET/MR 
with optimal attenuation cor-
rection yield similar SUV mea-
surements and diagnostic 
performance [24-26].

Multiple automated approa- 
ches for alignment to the da- 
tabase were employed, inclu- 
ding linear affine registration 
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there is limited number of correlated predic-
tors, such as our dataset of region-specific 
z-scores. A comprehensive explanation of ran-
dom forest methodology is described else-
where [29]. Due to the limited sample size for 
this analysis, we restricted ourselves to using 
this classical machine learning algorithm 
instead of a more complex algorithm, such as 
those from deep learning. As we were using a 
small number of derived features from the 
FDG-PET, the gains from more flexible and com-
plex machine learning algorithms would be 
expected to be small. For the random forest, we 
used the default parameters from the R imple-
mentation, as it has been shown that there are 
limited gains for tuning these parameters and 
that the biggest performance gains are made 
with the first 100 trees [30]. We were also lim-
ited in the amount of data in the training set to 
do this parameter tuning on. 

All machine learning was performed with the R 
statistical and computing software, Version 3.6 
using the random Forest R package. The default 
parameters for the random forest model were 
used: 500 trees and the number of variables 
available for splitting at each tree node is equal 
to the square root of the number of predictors 
in each model. More details about the training 
and validation set and assessing the variability 
of model performance can be found in the 
‘Diagnostic Performance and Statistical Ana- 
lysis’ section below.

After randomly assigning patients to training  
(n = 32) and validation (n = 33) sets, random 
forest models were created to evaluate for  
AD using SPM-generated z-scores in brain 
regions selected a priori that would have mini-
mal overlap between FTLD and AD [7, 31]: pre-
cuneus, posterior cingulate gyri, and posterior 
parietal cortices (a composite of the following 
AAL regions: angular gyrus, inferior parietal, 
and supramarginal gyrus) for AD; anterior cin-
gulate gyri, anterior temporal cortices, and 
basal ganglia for FTLD. Separate models from 
z-scores from whole brain (W) and cerebellar 
(C) intensity normalization were created. An 
additional combined model (WC) was built 
using data z-scores from both normalization 
methods. The same approach was used to gen-
erate models to diagnose FTLD. The same 
training and validation partition was applied in 
all models.

Categorical random forest models were creat-
ed by training on FTLD, AD, and non-AD/FTLD 
cases, with separate models trained on 
z-scores from whole brain, cerebellar, and com-
bined whole brain/cerebellar normalization.

Region count scoring system (non-machine 
learning)

Using the same training and validation sets, an 
additional model (Score) was generated. Each 
subject received an AD score (0-6) or FTLD 
score (0-6), counting the number of bilateral AD 
and FTLD regions below the z = -2.0 cutoff. A 
z-score cutoff of -2.0 was selected given its 
prior validation in the workup of dementia sub-
types [32], utility in stereotactic surface projec-
tion visualization [7], and its proximity to z = 
-1.65 and -1.96, which have previously been 
used as thresholds to distinguish normal and 
pathologic values [33, 34]. Figure 2 demon-
strates a use case of how these scores are 
tabulated for each patient. Models to diagnose 
AD and FTLD were trained and validated sepa-
rately. Youden’s J index was used to determine 
the optimal AD or FTLD score to provide the 
best discrimination.

A third Score model was applied to simultane-
ously distinguish AD, FTLD, and non-AD/FLTD 
cases. Subjects only achieving the AD Score 
threshold were classified as AD, FTLD Score 
threshold were classified as FTLD, and those 
that met both AD and FTLD Score thresholds 
were distinguished based on the relative 
z-scores of the cingulate cortex (anterior cingu-
late < posterior cingulate = FTLD; posterior cin-
gulate < anterior cingulate = AD). This particular 
tiebreaker was used given the anterior cingu-
late typically has lower FDG-avidity in FTLD 
[35], and the posterior cingulate has lower 
FDG-avidity in AD [36].

Gold standard and qualitative read

The gold standard was considered the clinical 
neurological diagnosis as ascertained from the 
neurologist’s latest electronic medical record 
(EMR) outpatient clinical note or in consultation 
with two referring neurologists, one with 35 
years (DL) and the other with 20 years of post-
residency experience (MA), both blinded to out-
puts from random forest models and Score out-
puts. Fifteen cases in which the chart diagno-
sis was mild cognitive impairment (MCI) were 
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reviewed by a neurologist with fellowship train-
ing in behavioral neurology and expertise in 
neurodegenerative disorders (SP). Blinded to 
random forest and Score outputs, SP reviewed 
the patients’ chart, which included neuropsy-
chological testing and occasionally CSF mark-
ers, classifying these patients has either AD 
(amnestic MCI on AD spectrum) or non-AD/
FTLD (non-AD MCI). Defining categories, non-
AD/FTLD includes both cognitively normal 

multiple diagnoses were given without favoring 
one, the qualitative read was labeled “nonspe-
cific”. If no diagnosis was given, the qualitative 
read was considered “nonspecific”.

Diagnostic performance and statistical analy-
sis

All statistical analyses were performed with R 
statistical and computing software, Version 

Figure 2. SPM-based scoring method. Top images demonstrates axial refor-
mats of a 3D T1-weighted MPRAGE sequence from a representative normal 
subject at the level of the posterior parietal cortices and basal ganglia (B), 
with superimposed concurrently acquired FDG-PET (windowed at SUVMAX 
0-15), as well as overlaying schematic representations of the regions of the 
Montreal Neurologic Institute standard space. Regions selected for the AD 
score include the bilateral posterior cingulate (PC), precuneus (P), and pos-
terior parietal (PP). Regions selected for the FTLD score include the bilateral 
anterior cingulate (AC), basal ganglia (BG), and anterior temporal cortex (AT). 
Bottom images are SPM z-score maps in a patient with a neurologic diagno-
sis of AD and qualitative imaging diagnosis of FTLD. Applying a z-score cutoff 
of -2.0 for each region, four AD regions had z-scores below the cutoff (AD 
score = 4) and one FTLD region at z-scores below the cutoff.

patient and non-AD MCI, as 
ascertained by the final neu-
rology note (gold standard). 
To assess the strength of the 
gold standard, SP also inde-
pendently evaluated the clini-
cal data of 10 randomly se- 
lected patients and yielded  
a separate diagnosis. A ka- 
ppa value was subsequently 
calculated. For the purposes 
of this study, patients with 
diagnoses of PPA and FTD 
were considered FTLD for 
analysis purposes. All cases 
of PPA were semantic variant 
(svPPA), falls under the FTLD 
diagnostic category. While ini-
tially clinically divergent from 
a behavioral neurology per-
spective, PPA and FTD often 
have overlapping imaging 
appearances and are often 
grouped in neuroimaging and 
pathology studies [37]. Also, 
svPPA often converts to FTD 
as the disease progresses 
[38].

The given diagnosis from the 
impression from the initial 
radiology report was used as 
the qualitative read. These 
qualitative reads rendered 
interpreting radiologist within 
48 hours of the FDG-PET 
acquisition. Qualitative reads 
were furnished by the radiolo-
gist without the use of any 
SPM software, interpreting 
only the raw SUV fused with 
either a CT or MRI of the brain. 
If multiple diagnoses were 
offered, the diagnosis that 
was most favored was used. If 
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3.6. Using Youden’s J index, predicted probabili-
ties from the random forest and scores model 
were thresholded to yield accuracies, sensitivi-
ties, and specificities in the validation set. In 
the random forest models, the Gini importance 
factors for each brain region were generated in 
the training set to identify which regions had 
the strongest discriminatory power in diagnos-
ing AD and FTLD respectively. The Gini impor-
tance factors provide a relative ranking of the 
features and are a by-product in the training of 
the random forest classifier. Bootstrapped 95% 
confidence intervals for accuracy, sensitivity, 
specificity, and area under the curve (AUC) were 
calculated for both quantitative data and the 
qualitative reads.

Results 

Clinical and demographic characteristics of 
the study population 

Table 1 outlines the demographic and clinical 
features of our study population, including age, 
gender ratio, and scanning modality. Mean age 
was 72.1 years (range 47-88) and 46.1% were 
women. There were 67.7% with a significant 
neurological diagnosis, including AD (35.3%) 
and FTLD (32.3%). 32.3% of patients were 
deemed non-AD/FTLD (11 cognitively normal, 
10 non-AD MCI). There were no significant dif-
ferences in age among each clinical group.

Characteristics of radiologists providing quali-
tative reads 

Radiologists who provided the qualitative read 
had a mean of 7.9 years of post-fellowship 
experience (ranging 0 to 32 years). Thirty-eight 
scans were read by five neuroradiologists, 19 
by three nuclear medicine radiologists, and 8 
by two body radiologists. 

Diagnostic performance 

SP’s independent evaluation of the clinical data 
and comparison with the gold standard (the lat-
est neurological diagnosis in the chart) yielded 
a kappa value of 0.66. Table 2 outlines the per-
formance random forest models in diagnosing 

Table 1. Demographic and clinical characteristics of the study population
Neurologic Diagnosis FTLD AD Non-AD/FTLD Total
# of Cases 21 (15 FTD, 6 PPA) 23 21 (11 cognitively normal + 10 non-AD MCI) 65
Age (SD) Range 71.3 (8.0) 57-88 74.1 (8.5) 58-88 70.7 (9.6) 47-84 72.1 (8.7) 47-88
Number Female (%) 10 (48%) 10 (43%) 10 (48%) 30 (46%)
PET/CT 14 15 16 45
PET/MR 7 8 5 20
The majority of cases were PET/CT. Nearly half the patients were female. Mean age did not differ significantly between subgroups. FTLD = 
Frontotemporal Lobar Degeneration; FTD = Frontotemporal Dementia; PPA = Primary Progressive Aphasia; AD = Alzheimer Disease; MCI = Mild 
Cognitive Impairment.

Table 2. Diagnostic performance of qualitative reads, random forest models, and heuristic scoring 
model (Score) to distinguish AD and Non-AD/FTLD patients

Qualitative Read W C WC Score
Accuracy (95% CI) 0.76 (0.61-0.79) 0.79 (0.61-0.88) 0.70 (0.61-0.88) 0.79 (0.64-0.91) 0.79 (0.70-0.88)
Sensitivity  0.22 1.00 0.89 0.89 0.89
Specificity  0.96 0.71 0.62 0.75 0.75
AUC (95% CI) --- 0.87 (0.66-0.90) 0.82 (0.65-0.90) 0.89 (0.66-0.91) 0.86 (0.75-0.94)
All random forest models (W, C, and WC) had higher sensitivity to detect AD than the qualitative read. While Score and WC 
models yielded the highest accuracy and WC had the highest AUC. However, confidence intervals were overlapping.

Figure 3. Receiver Operating Characteristics Curve 
for Models for AD. AUC for all random forest models 
were similar with overlapping confidence intervals.
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AD. All models had a sensitivity of 0.89 or high-
er, surpassing the 0.22 (95% CI, 0-0.33) sensi-
tivity of qualitative reads. There was a clear 
tradeoff with specificity, as ML models and 
Score model were less specific than qualitative 
reads (0.62-75 vs. 0.96). Nonetheless, all ran-
dom forest models except for model C were 
more accurate than the qualitative read, 
although 95% confidence intervals were over-
lapping. Among the models, WC and Score had 
the highest accuracy, and the WC model had 
the highest AUC value, the latter of which is 
illustrated in Figure 3. 

Table 3 and Figure 4 illustrate random forest 
model performance in diagnosing FTLD. All 
models performed similarly in accuracy, sensi-
tivity, and specificity with the qualitative read 
with overlapping 95% confidence intervals. 
Similar to the AD dataset, sensitivity among 
qualitative reads was low at 0.08, with near 
1.00 sensitivity using the Score method. Again, 
there was a trade-off between sensitivity and 
specificity, which decreased with the Score 
model to 0.48 and increased among the quali-
tative reads to 0.90. In contrast the WC model 
had higher specificity than sensitivity (0.90 vs. 
0.50). Among the models, WC had the highest 

accuracy (0.76) and C at the highest AUC (0.73), 
although confidence intervals were overlap-
ping. Within the validation set, there were four 
cases in which all four models were discordant 
for AD and two cases in which all four models 
were discordant for FTLD. 

Among categorical random forest models to 
distinguish AD, FTLD, and Non-AD/FTLD 
patients, the WC model had the highest accu-
racy of 0.61, followed by the C model (0.52), 
and W model (0.48). The Score model to distin-
guish all three categories performed similarly 
to the WC random forest, with an accuracy of 
0.63 (Table 4).

CSF AD biomarkers and cognitive testing

AD biomarkers (t-tau, p-tau, and Aβ-42) from 
CSF samples were available in 5 patients and 
mental status exam scores were available in  
6 patients, which were reported as either 
Montreal Cognitive Assessment (MoCA) or 
Folstein. Only one patient had positive CSF AD 
biomarkers. These data are summarized in 
Table 5. No statistical analysis was performed 
due to the limited number cases with CSF bio-
marker data.

Discussion

Given the growing incidence of AD and the 
emergence of disease-modifying therapies, our 

Table 3. Diagnostic performance of qualitative reads, random forest models, and heuristic scoring 
model (Score) to distinguish FTLD and Non-AD/FTLD patients

Qualitative read W C WC Score
Accuracy (95% CI) 0.61 (0.64-0.85) 0.70 (0.52-0.85) 0.70 (0.58-0.88) 0.76 (0.55-0.88) 0.67 (0.55-0.76)
Sensitivity  0.08 0.67 0.83 0.50 1.00
Specificity  0.90 0.71 0.62 0.90 0.48
AUC (95% CI) --- 0.67 (0.52-0.82) 0.73 (0.56-0.88) 0.72 (0.53-0.85) 0.72 (0.59-0.83)
All random forest models (W, C, and WC) had higher sensitivity to detect FTLD than the qualitative read. While WC model 
yielded the highest accuracy, C model had the highest AUC. However, confidence intervals were overlapping.

Figure 4. Receiver Operating Characteristics Curve 
for Models for FTLD. AUC for all random forest mod-
els were similar with overlapping confidence inter-
vals.

Table 4. Diagnostic performance of random 
forest models and heuristic scoring model 
(score) to distinguish AD, FTLD, and Non-AD/
FTLD patients

W C WC Score
Accuracy 0.48 0.45 0.61 0.63
The random forest model that incorporated z-scores from 
both whole brain and cerebellar normalization (WC) had 
the highest accuracy, similar to the Score model.
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goal was to develop an easy-to-implement scor-
ing system based on SPM z-scores that could 
approximate the performance of a machine 
learning approach. Our scoring system per-
formed similarly to automated or machine 
learning based approaches in the literature 
when diagnosing AD in isolation, but perfor-
mance degraded when distinguishing AD and 
FTLD. 

The literature shows that visual inspection  
of SPM images alone bolsters diagnostic 
performance of FDG-PET in dementia workup. 
Perani et al. achieved an AUC of 0.67 when  
the reader was evaluated SPM brain maps, 
compared to 0.50 when evaluating standard 
FDG images [11]. Deep learning approaches 
further enhance diagnostic performance, for 
example, Ding et al. trained a convolutional 
neural network on over a thousand patient 
FDG-PET studies from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) dataset and 
yielded AUC = 0.92 for AD and AUC = 0.63 for 
MCI due to AD [19]. Our AD random forest mod-
els and non-ML scoring system trained on a 
smaller dataset (n = 32) and on SPM z-scores 
rather than raw images featured similar levels 
of diagnostic performance for AD (AUC = 0.82-
0.87), all with a statistically higher sensitivity 
for AD than the initial reader analyzing standard 
FDG-PET images. 

While our heuristic scoring method with SPM 
improved sensitivity in distinguishing AD and 
FTLD patients from non-AD/FTLD patients, 
there appeared to be a clear tradeoff with spec-
ificity, given that specificity of the original quali-
tative read was higher (0.96 for AD, 0.90 for 

FTLD). The relatively lower specificity of the 
scoring heuristic could be multifactorial. One is 
the inherent limitation of our gold standard, as 
discussed below. Its possible subset of our 
cases counted as false positives were in fact 
true positives and may have eventually con- 
verted to dementia. Due to the retrospective 
design of the study, our ability to follow-up on 
subjects beyond the EMR was restricted. 
Another possibility is that the maximum age in 
our study group was 88, whereas the maximum 
age in the SPM database was 79. Normal age-
related declines in FDG-avidity are well-docu-
mented [39, 40]. Therefore, it is conceivable 
that the SPM scoring heuristic and random for-
est models misclassified normal aging-related 
changes in FDG-avidity as AD or FTLD, yielding 
false positives and lower specificity. Another 
factor may be the z-score cutoff selection of 
-2.0, although lower magnitude cutoffs have 
been used [33, 34].

The majority of machine learning studies us- 
ing FDG-PET to diagnose dementia focuses on 
discriminating AD from normal patients [41-
43]. However, according to the Centers for 
Medicare & Medicaid Services (CMS), the first 
condition to reimburse FDG-PET scan is that 
the “onset, clinical presentation, or course of 
cognitive impairment is atypical for AD, and 
FTD is suspected as an alternative neurode-
generative cause of the cognitive decline”  
[44]. Therefore, FDG-PET scans in the clinical 
setting are not intended to distinguish cogni-
tively normal patients from patients with AD, 
but rather to distinguish AD and FTLD when 
there is already likely a clinical diagnosis of 
dementia.

Table 5. Findings for patients with CSF AD biomarkers and cognitive assessments
CSF AD Biomarker Neurological Diagnosis Qualitative read Score Diagnosis Cognitive Exam Score

Patient 1 Negative FTD AD Non-AD/FTLD MoCA 24
Patient 2 Positive AD Non-AD/FTLD AD Folstein 22
Patient 3 Negative AD Nonspecific AD MoCA 16
Patient 4 --------- PPA FTLD FTLD Folstein 25
Patient 5 Negative AD Non-AD/FTLD Non-AD/FTLD MoCA 14
Patient 6 --------- Non-AD/FTLD Non-AD/FTLD Non-AD/FTLD Folstein 27
Patient 7 Negative FTD Normal FTLD ---------
Of the 5 patients in our dataset, only 1 had positive biomarkers for AD, as determined from p-tau, t-tau, and Aβ-42. In this 
patient, the initial qualitative read interpreted the PET/CT as normal, whereas our Score method classified this patient as AD, 
concordant with the final neurological diagnosis. Scores on the MoCA range from zero to 30, with a score of 26 and higher 
generally considered normal. Scores on the Folstein are as follows: 25-30 points: normal cognition 21-24 points: mild dementia 
10-20 points: moderate dementia 9 points or lower: severe dementia.
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Our non-ML scoring method meant to distin-
guish AD, FTLD, and non-AD/FTLD patients had 
lower accuracy (0.63) relative to the separate 
binary models described above (e.g., AD versus 
normal). The scoring method was also slightly 
better than most of the categorical random for-
est models to distinguish AD, FTLD, and nor-
mal, the latter with accuracies ranging from 
0.48 to 0.61. This was likely due to lower dimen-
sionality of data, relatively small sample size, 
and use of a real-world clinical cohort rather 
than curated, validated databases. Compared 
to previously applied machine learning tech-
niques, Davatzikos et al. incorporating highly 
dimensional data from MRI scans yielded an 
accuracy of 0.84 on a similar size as our sam-
ple (AD n = 37, FTD n = 12), with the authors 
noting that the differentiation between AD and 
FTLD being more challenging than distinguish-
ing between AD and normal subjects [45]. 
Applying stepwise forward logistic regression, 
Mosconi et al. were able to develop a SPM-
based tool to distinguish five diagnostic groups, 
including Dementia with Lewy Bodies, attaining 
sensitivities from 71% to 99% and specificities 
from 68% to 98% [46]. An ongoing multisite 
effort is underway to merge data from the ADNI 
cohort with multiple emerging FTLD databases 
[47], which will probably result in even stronger 
discriminatory power.

A shared shortcoming of machine learning 
approaches is that they may have limited deploy 
ability in the community, especially in areas 
remote from academic medical centers without 
the software or expertise to implement them 
into clinical workflow. For example, in our study, 
random forest models were generated and 
interpreted with the statistical software pack-
age R by a statistician with expertise in R soft-
ware development and machine learning.

These approaches also face the same barriers 
to implementation machine learning has across 
radiology, including concerns over data owner-
ship, regulatory constraints, challenges with 
inter-institutional data transfer, and the degree 
to which the test set reflects real-world patients 
[21]. On the other hand, a ready to implement 
approach similar to the scoring method 
described above could enhance diagnostic per-
formance today with commercially available 
software, particularly improving sensitivity in 
the detection of AD. 

However, as machine learning image analysis 
tools transition from research to clinical set-
tings, the level of user expertise required and 
interoperability issues will likely become dimin-
ishing factors. Multiple neuroimaging suites 
have already arrived to market, largely focused 
on large vessel occlusions in cerebral ischemia 
[48]. While these ready-to-use software pack-
ages are more practical than developing soft-
ware de novo, additional training is often need-
ed for physicians, technologists, and IT special-
ists to successfully deploy the AI system [49]. 
Moreover, options for commercial AI software 
for the evaluation of dementia remain limited.

Amyloid targeted PET offers an alternative to 
FDG-PET to help clinicians distinguish FTLD 
and AD, with the advantage imaging one of the 
pathologic proteins of AD rather than the emer-
gent phenomenon of altered brain metabolism. 
However, amyloid targeted PET has similar dis-
criminatory power between AD and FTLD rela-
tive to FDG-PET [50]. and in at least one study, 
FDG-PET was a better predictor of cognitive 
performance than 18F florbetapir in the workup 
of AD and MCI [51]. The Imaging Dementia-
Evidence for Amyloid Scanning (IDEAS) study 
offers seemingly contrary evidence, the prima-
ry diagnosis changed with amyloid PET in 
35.6% of study participants. Moreover, com-
pared to FDG-PET, IDEAS demonstrated higher 
sensitivity and negative predictive value with 
amyloid PET in the diagnosis of AD [52]. These 
mixed findings could be explained by how the 
clinical question is framed. Inclusion into the 
IDEAS study required that participants meet 
appropriateness criteria as outlined by the 
2013 Amyloid Imaging Taskforce, outlining 
three “appropriate” clinical scenarios, none of 
which explicitly state that FTLD must be a diag-
nostic consideration [53]. In the 2011 study by 
Rabinovici et al. showing similar accuracy 
between amyloid PET and FDG-PET, partici-
pants had to have met clinical criteria for either 
AD or FTLD, a narrower clinical question than 
the IDEAS study and similar to the inclusion cri-
teria of our study.

Despite the positive findings in the IDEAS study, 
amyloid-targeted PET is still not currently cov-
ered under Medicare outside of a clinical trial, 
as determined by the Centers for Medicare & 
Medicaid Services (CMS), leaving patients and 
families to cover the high costs [54]. FDG-PET, 
on the other hand, is often covered by Medicare 
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under most appropriate clinical scenarios, spe-
cifically when the primary diagnostic consider-
ations are AD and FTLD [44]. While accumulat-
ing evidence from the New IDEAS study may 
sway policymakers, FDG-PET will likely remain 
the standard of care in the near term [55].

It is possible the lessons learned from the heu-
ristic, quantitative SPM-based method de- 
scribed herein may have relevance for the 
broad use of amyloid PET in the future. 
Quantitative analysis of amyloid PET has 
already shown promise on a limited basis. In 55 
patients scanned with 18F florbetapir, quantita-
tive of analysis of PET images changed the ini-
tial visual read in 9.7% of interpretations [56]. A 
quantitative approach, such has our SPM meth-
od for FDG-PET, could similarly augment amy-
loid PET reads.

Tau imaging is also an emerging approach to 
diagnose AD and has the potential to better 
characterize the severity of disease, given that 
tau pathology has been found to more closely 
correlate with AD symptoms than amyloid [57]. 
However, tau imaging is currently primarily a 
research tool, not currently reimbursed or wide-
ly available. 

This study also is among the first to utilize the 
commercially available syngo.via MI Neurology 
Workflow for dementia diagnosis in a research 
setting, one group using the tool to correlate 
findings between FDG-PET and EEG [58], and 
another exploring the utility or combined DTI/
PET in FTLD workup [59]. Hitherto, MI Neurology 
Workflow has been predominately applied to 
epilepsy research [25, 60, 61]. Another easy-to-
use software package optimized for FDG-PET 
analysis in the clinical setting is MIMneuro, 
which was recently successfully employed to 
compare volumetric and metabolic profiles in 
patients with dementia [62]. What these clini-
cally focused FDG-PET software packages have 
in common is they are seamlessly integrated 
with hospital Picture Archiving and Com- 
munication Systems (PACS) and can be navi-
gated with relatively little training. This con-
trasts with research-focused FDG-PET analysis 
software, such as PMOD, which is not optimized 
for PACS integration or easy use by the clini-
cian. Nonetheless, tools such as PMOD are 
extensively validated, and in one study achieved 
an accuracy of 95.8% distinguishing AD from 

normal patients with the support of deep learn-
ing [63].

A limitation of our study compared to publica-
tions discussed above is that our scoring sys-
tem and random forest models were trained to 
a small heterogenous sample rather than a 
curated research cohort. The small sample size 
is also less than ideal for random forest train-
ing, and conceivably, a larger training set could 
have improved the performance of random for-
est model. Future applications of the random 
forest model on a larger dataset would confirm 
this.

Another limitation is that in cases of MCI in 
which the clinician did not denote AD versus 
non-AD, we relied on a neurologist with exper-
tise in dementia to discern the neurological 
diagnosis retrospectively. MCI is a clinical het-
erogeneous entity, which includes prodromal 
AD, systemic diseases, neuroinflammatory con-
ditions, medical side effects, metabolic dys-
function, and is therefore a less rigid diagnostic 
category than AD or FTLD [64]. Another consid-
eration is that we considered the neurological 
diagnosis the ground truth for this study, which 
is an inherently limited gold standard given that 
interrater reliability among neurologists is weak 
to moderate globally, with Kappa values for 
multiple dementia disorders is consistently 
under 0.7 [65]. In our internal evaluation of the 
strength of the gold standard, we calculated a 
Kappa value of 0.66. This may partly explain 
the similar degrees of accuracy with other FDG-
PET-based models using the clinical diagnosis 
as the gold standard [11, 19]. Of note, there 
were six patients in which all four models clas-
sified the patient discordantly, and it is there-
fore possible that some of these patients had 
mixed pathology or were misclassified by the 
neurologist. Additional, 31 cases were elimi-
nated from the sample due to lack of documen-
tation in the EMR, which may have introduced a 
degree of selection bias.

This study serves as a proof-of-concept for a 
readily deployable scoring system based on 
SPM z-score maps generated from commercial-
ly available software. This non-ML approach 
mirrored the accuracy of a machine learning 
model along multiple metrics. Future efforts 
may include further validation on a larger, 
curated clinical cohort, such as the ADNI data-
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set, as well as the forthcoming Frontotemporal 
Lobar Degeneration Neuroimaging Initiative 
dataset. In addition, a similar scoring system 
may be applied alongside prospective, longitu-
dinal studies incorporating systematic neuro-
psychologic testing and CSF samples. If diag-
nostic performance is validated, radiologists in 
the community could have an easy-to-use tool 
at their disposal to assist neurologists in distin-
guishing AD from FTLD.
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